Loading...
Thumbnail Image
Publication

Lower Semicontinuity in Lยน of a Class of Functionals Defined on BV with Caratheodory Integrands

Wunderli, Thomas
Date
2021
Authors
Wunderli, Thomas
Advisor
Type
Article
Peer-Reviewed
Published version
Degree
Description
Abstract
We prove lower semicontinuity in ๐ฟยน(ฮฉ) for a class of functionals ๐’ข :๐ต๐‘‰(ฮฉ) โ†’โ„ of the form ๐’ข(๐‘ข)=โˆซฮฉ๐‘”(๐‘ฅ, ๐›ป๐‘ข)๐‘‘๐‘ฅ + โˆซฮฉ๐œ“(๐‘ฅ)๐‘‘|Dหข๐‘ข| where ๐‘” :ฮฉโจ‰โ„แดบโ†’โ„, ฮฉโŠ‚โ„แดบ is open and bounded, ๐‘”(.,๐‘) โˆŠ ๐ฟยน(ฮฉ) for each ๐‘ satisfies the linear growth condition lim|๐‘โ†’โˆž ๐‘”(๐‘ฅ,๐‘)/|๐‘| = ๐œ“(๐‘ฅ) โˆŠ ๐ถ(ฮฉ) โˆฉ ๐ฟโˆž (ฮฉ) and is convex in ๐‘ depending only on |๐‘| for a.e. ๐‘ฅ. Here, we recall for ๐‘ข โˆŠ ๐ต๐‘‰(ฮฉ); the gradient measure ๐ท๐‘ข = ๐›ป๐‘ข ๐‘‘๐‘ฅ + ๐‘‘(Dหข๐‘ข)(๐‘ฅ) is decomposed into mutually singular measures ๐›ป๐‘ข ๐‘‘๐‘ฅ and ๐‘‘(Dหข๐‘ข)(๐‘ฅ). As an example, we use this to prove that โˆซฮฉ๐œ“(๐‘ฅ) โˆš[๐›ผยฒ(๐‘ฅ) + | ๐›ป๐‘ข |ยฒ ๐‘‘๐‘ฅ + โˆซฮฉ๐œ“(๐‘ฅ)๐‘‘|Dหข๐‘ข|] is lower semicontinuous in ๐ฟยน(ฮฉ) for any bounded continuous ๐œ“ and any ๐›ผ โˆŠ ๐ฟยน(ฮฉ). Under minor addtional assumptions on ๐‘”, we then have the existence of minimizers of functionals to variational problems of the form ๐’ข(๐‘ข) + ||๐‘ข - ๐‘ขโ‚€||๐ฟยน for the given ๐‘ขโ‚€ โˆŠ ๐ฟยน(ฮฉ) due to the compactness of ๐ต๐‘‰(ฮฉ) in ๐ฟยน(ฮฉ).