Loading...
Thumbnail Image
Publication

In-Between Projection Interpolation in Cone-Beam CT Imaging using Convolutional Neural Networks

Dweek, Samaa
Dhou, Salam
Shanableh, Tamer
Date
2022
Advisor
Type
Article
Postprint
Degree
Description
Abstract
Respiratory-Correlated cone beam computed tomography (4D-CBCT) is an emerging image-guided radiation therapy (IGRT) technique that is used to account for the uncertainties caused by respiratory-induced motion in the radiotherapy treatment of tumors in thoracic and upper-abdomen regions. In 4D-CBCT, projections are sorted into bins based on their respiratory phase and a 3D image is reconstructed from each bin. However, the quality of the resulting 4D-CBCT images is limited by the streaking artifacts that result from having an insufficient number of projections in each bin. In this work, an interpolation method based on Convolutional Neural Networks (CNN) is proposed to generate new in-between projections to increase the overall number of projections used in 4D-CBCT reconstruction. Projections simulated using XCAT phantom were used to assess the proposed method. The interpolated projections using the proposed method were compared to the corresponding original projections by calculating the peak-signal-to-noise ratio (PSNR), root mean square error (RMSE), and structural similarity index measurement (SSIM). Moreover, the results of the proposed method were compared to the results of existing standard interpolation methods, namely, linear, spline, and registration-based methods. The interpolated projections using the proposed method had an average PSNR, RMSE, and SSIM of 35.939, 4.115, and 0.968, respectively. Moreover, the results achieved by the proposed method surpassed the results achieved by the existing interpolation methods tested on the same dataset. In summary, this work demonstrates the feasibility of using CNN-based methods in generating in-between projections and shows a potential advantage to 4D-CBCT reconstruction.